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a b s t r a c t

Expectation–maximization (EM) algorithm has been used to maximize the likelihood
function or posterior when the model contains unobserved latent variables. One main
important application of EM algorithm is to find the maximum likelihood estimator for
mixture models. In this article, we propose an EM type algorithm to maximize a class of
mixture type objective functions. In addition, we prove the monotone ascending property
of the proposed algorithm and discuss some of its applications.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Expectation–maximization (EM) algorithm (Dempster et al., 1977) has been used to maximize the likelihood function
or posterior when the model contains unobserved latent variables. The EM algorithm iterates between an expectation (E)
step and a maximization (M) step. In the E step, we compute the expectation of the log likelihood of complete data with
respect to latent variables given the current parameter estimates. In theM step, wemaximize the expected log likelihood of
complete data. Therefore, the EM algorithm transfers the problem of maximizing the original log likelihood to the problem
of maximizing the expected log likelihood of complete data, which is usually much easier to deal with.

One of the important applications of the EM algorithm is to find the maximum likelihood estimator for finite mixture
models. They are natural models for unobserved population heterogeneity and are generally applicable when one samples
from a population which consists of several homogeneous subpopulations. The homogeneous subpopulations will be called
components of the population. The random variable X is said to have am-component finite mixture density if

f (x; θ) =

m
j=1

πjfj(x; λj), (1.1)

where θ = (λ1 . . . , λm, π1, . . . , πm), πjs are mixing proportions, and fj(x; λj) is the jth component density with parameter
λj. Mixture models have experienced increased interest over past decades. Mixture models can be used for cluster analysis,
latent class analysis, discriminant analysis, image analysis, survival analysis, diseasemapping,meta analysis, andmore. They
provide extremely flexible descriptive models for distributions in data analysis and inference. For a general introduction to
mixture models, see Lindsay (1995), Böhning (1999), McLachlan and Peel (2000), and Frühwirth-Schnatter (2006).

Unlike the traditional EM algorithm for mixture model, which focuses on finding the MLE of the model parameters θ in
(1.1), Li et al. (2007) proposed the Modal EM (MEM) algorithm to find the mode of the mixture density (1.1) with known θ
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and successfully apply it to do nonparametric clustering. In this article, we prove that the MEM algorithm can be applied to
maximize a general mixture type objective function

f (x) =

K
k=1

wk


log


L

l=1

aklfkl(x)


, (1.2)

where K , L, wks and akls are known positive constants, fkl(x)s are positive known functions, and x can be a scalar or a vector.
We will call the MEM algorithm in such situation the generalized modal EM algorithm (GMEM).

When K = 1, the objective function (1.2) is simplified to

f (x) = w1 log


L

l=1

a1lf1l(x)


∝

L
l=1

a1lf1l(x). (1.3)

Therefore, the MEM algorithm (Li et al., 2007) is a special case of the proposed GMEM if we further assume
L

l=1 a1l = 1
and f1l(x)s are density functions.

We will discuss some applications of the GMEM algorithm. Specifically, we will discuss the applications of the proposed
algorithm to adaptive linear regression (Yuan and De Gooijer, 2007), adaptive nonparametric regression (Linton and Xiao,
2007), a class of robust nonparametric regression, and the edge-preserving smoothers for image processing proposed by
Chu et al. (1998). In addition, we will also apply the GMEM algorithm to a special class of Generalized M estimators (GM
estimators for short) (Hampel et al., 1986).

The remainder of this paper is organized as follows. In Section 2, we introduce the proposed EM type algorithm for
a general mixture type objective function (GMEM). In Section 3, we introduce some applications of the proposed GMEM
algorithm. We give some discussion in Section 4.

2. New GMEM algorithm

Instead of focusing on estimating themixturemodel parameter θ in (1.1), Li et al. (2007) introduced theModal EM (MEM)
algorithm to find themode ofmixture density (1.1), i.e., maximize themixture density f (x; θ)when θ is known. In this article,
we prove that the MEM algorithm can be applied to a more general mixture type objective function (1.2). Specifically, given
the initial value x(0), in the (t + 1)th step of the proposed GMEM algorithm,
E step: Let

π
(t+1)
kl =

aklfkl(x(t))

L
l=1

aklfkl(x(t))

, k = 1, . . . , K ; l = 1, . . . , L. (2.1)

M step: Update

x(t+1)
= argmax

x
Q (x | x(t)) (2.2)

where

Q (x | x(t)) =

K
k=1

L
l=1


wkπ

(t+1)
kl log fkl(x)


. (2.3)

If fkl(x) is a normal density with mean µkl and variance σ 2
kl, then the above M step has an explicit formula, i.e.,

x(t+1)
=

K
k=1

L
l=1

wkπ
(t+1)
kl µklσ

−2
kl

K
k=1

L
l=1

wkπ
(t+1)
kl σ−2

kl

.

The following theorem proves that the above GMEM algorithm monotonely increases the objective function (1.2) after
each iteration. Its proof is given in the Appendix.

Theorem 2.1. The objective function (1.2) is non-decreasing after each iteration of the above generalized MEM (GMEM)
algorithm, i.e., f (x(t+1)) ≥ f (x(t)), until a fixed point is reached. The GMEM is strictly monotonely increasing at the (t + 1)th
step, i.e., f (x(t+1)) > f (x(t)) if one of the following two conditions is satisfied:
1. There exist 1 ≤ k ≤ K and 1 ≤ l1 < l2 ≤ L such that

fkl1(x
(t+1))

fkl1(x(t))
≠

fkl2(x
(t+1))

fkl2(x(t))
.

2. In the M step of (2.2), Q (x(t+1)
| x(t)) > Q (x(t)

| x(t)).
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Based on the above theorem, we can see that if x(t+1) is the unique maximizer in (2.2), then the objective function f (x) in
(1.2) will increase after the iteration. In addition, it can be seen that the objective function f (x) will also increase if we only
increase Q (x | x(t)) in M step instead of maximizing it.

Note, however, like other general optimization algorithms, the proposedGMEMalgorithm is only guaranteed to converge
to a local maximum of (1.2). Therefore, it is prudent to run the GMEM algorithm starting from different initial values, if we
want to find the global maximum of (1.2).

3. Some applications of GMEM

In this section, we will discuss some, but not exhaustive, applications of the proposed GMEM algorithm.

3.1. Adaptive linear regression

Suppose (x1, y1), . . . , (xn, yn) are sampled from the linear regression model

y = xTβ + ϵ, (3.1)

where x is a p-dimensional vector of covariates independent of the error ϵ with E(ϵ) = 0. The least squares estimator (LSE)
is traditionally used to estimate β. For normally distributed errors, LSE is exactly the maximum likelihood estimate (MLE).
However, LSE will lose some efficiency when the error is not normally distributed. Yuan and De Gooijer (2007) proposed to
adaptively estimate the slope parameters by maximizing

n
i=1

log


1
n


j≠i

φh

yi − xTi β − yj − xTj β


, (3.2)

where φh(t) is a normal kernel with bandwidth h. One might also use some other kernels. However, it is well known that
the choice of kernel is not crucial. The Gaussian kernel is used for the simplicity of computation.

Yuan and De Gooijer (2007) used the Newton–Raphson algorithm to maximize (3.2). However, the Newton–Raphson
algorithm requires to calculate first and second derivatives of (3.2). In addition, it cannot guarantee to converge. Moreover
the found solution by the Newton–Raphson algorithm can even be a local minima.

Note that the above objective function (3.2) has the mixture form (1.2). Therefore, we can use the proposed GMEM
algorithm to maximize (3.2). Assuming that x does not contain the intercept term, then given the initial value β(0), in the
(k + 1)th step,
E step: Let

π
(k+1)
ij =

φh

yi − xTi β

(k)
− yj − xTj β

(k)
j≠i

φh

yi − xTi β

(k)
− yj − xTj β

(k) , 1 ≤ i ≠ j ≤ n.

M step: Update

β(k+1)
= argmax

β

n
i=1


j≠i

π
(k+1)
ij log


φh

yi − xTi β − yj − xTj β


= (XTWX)−1XTWY,

where X = (x1 − x2, . . . , x1 − xn, . . . , xn − xn−1)
T , Y = (y1 − y2, . . . , yn − yn−1)

T , andW = diag{π (k+1)
12 , . . . , π

(k+1)
n,n−1}.

The idea of the above GMEM algorithm can be also applied to find the adaptive nonlinear regression estimator if the
linear regression function in (3.1) is replaced by a parametric nonlinear regression function.

3.2. Adaptive nonparametric regression

Suppose that (x1, y1), . . . , (xn, yn) are an independent and identically distributed random sample from

y = m(x) + ϵ,

where E(ϵ | X = x) = 0, var(ϵ | X = x) = σ 2(x), and m(·) is an unknown nonparametric smoothing function to be
estimated. Local polynomial regression (Fan and Gijbels, 1996) is to locally approximate m(x) by a polynomial function.
That is, for x in a neighborhood of x0, we approximate

m(x) ≈

p
l=0

m(l)(x0)
l!

(x − x0)l ≡

p
l=0

βl(x − x0)l,
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where βl = m(l)(x0)/l!. Then the local polynomial regression estimates local parameter θ = (β0, . . . , βp) byminimizing the
following weighted least squares

n
i=1

Kh(xi − x0)


yi −

p
l=0

βl(xi − x0)l
2

, (3.3)

where Kh(t) = h−1K(t/h), a rescaled kernel function of K(t) with a bandwidth h. The above least squares based local
polynomial regression estimator will lose some efficiency if the error density is not normal.

Linton and Xiao (2007) proposed to adaptively estimate the local parameter θ by maximizing the estimated local log-
likelihood

n
i=1

Kh(xi − x0) log


f̃


yi −

p
l=0

βl(xi − x0)l


, (3.4)

where f̃ is a kernel density estimator of error term ϵ

f̃ (ϵi) =
1
n

n
j≠i

φg

ϵi − ϵ̃j


,

where ϵ̃j = yj − m̃(xj) is the residual based on some initial estimator m̃(·) (such as the least squared based local polynomial
regression estimator), and φg(·) is the normal kernel with bandwidth g . Linton and Xiao (2007) proved that the above
adaptive nonparametric regression estimator has the asymptotic ‘‘oracle’’ property, i.e., it has the same asymptotic efficiency
as the local log-likelihood estimator assuming f (·) were known.

Linton and Xiao (2007) proposed to use the Newton–Raphson method or the one-step Newton–Raphson method to
maximize (3.4). Note that (3.4) has the mixture form (1.2). Therefore, we can apply the proposed GMEM algorithm to
maximize (3.4): given the initial value θ(0), in the (k + 1)th step,
E step: Let

π
(k+1)
ij =

Kh(xi − x0)φg


yi −

p
l=0

β
(k)
l (xi − x0)l − ϵ̃j



j≠i

Kh(xi − x0)φg


yi −

p
l=0

β
(k)
l (xi − x0)l − ϵ̃j

 , 1 ≤ i ≠ j ≤ n.

M step: Update

θ(k+1)
= argmax

θ

n
i=1


j≠i

π
(k+1)
ij Kh(xi − x0) log


φg


yi −

p
l=0

βl(xi − x0)l − ϵ̃j


= (XTWX)−1XTWY,

whereY = (y1−ϵ̃2, . . . , y1−ϵ̃n, . . . , yn−ϵ̃n−1)
T ,W = diag{π (k+1)

12 Kh(x1−x0), . . . , π
(k+1)
1n Kh(x1−x0), . . . , π

(k+1)
n,n−1Kh(xn−x0)},

and X = (x1, . . . , xn)T , with

xi =

 1 1 · · · 1
(xi − x0) (xi − x0) · · · (xi − x0)

. . . · · · · · ·

(xi − x0)p (xi − x0)p · · · (xi − x0)p


(p+1)×(n−1)

.

The idea of the above GMEM algorithm can be also applied to find the adaptive estimator for some other nonparametric
or semiparametric regression models, such as varying coefficient models (Cleveland et al., 1992) and varying-coefficient
partially linear model (Zhang et al., 2002; Xia et al., 2004; Fan and Huang, 2005).

3.3. Mode detection

Given the observation (x1, . . . , xn) from the population X with density f (x), suppose we want to estimate the mode of
f (x). Parzen (1962) and Eddy (1980) proposed to estimate the model of f (x) by maximizing the kernel density estimator of
f (x)

f̂ (x) =
1
n

n
i=1

φh(xi − x). (3.5)

Here x can be a scalar or a vector. If x is a vector, then we use multivariate normal kernel.
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Note that the above kernel density estimator has the mixture form (1.3) ((1.2) with K = 1). We can apply GMEM to find
the mode of f̂ (x): given the initial value x(0), in the (k + 1)th step,
E step: Let

π(j | x(k)) =
φh(xj − x(k))
n

i=1
φh(xi − x(k))

, j = 1, . . . , n.

M step: Update

x(k+1)
= argmax

x

n
j=1

π(j | x(k)) log{φh(xj − x)} =

n
j=1

π(j | x(k))xj.

From the above algorithm, we can see that the estimated mode can be also considered as a weighted average of the
observations and the weights depend on the distance between each observation and the mode.

Note that the kernel density estimator (3.5) can be considered as a mixture density with n components. Li et al. (2007)
have successfully applied the MEM algorithm to do nonparametric clustering by locating the local modes of kernel density
(3.5) when starting from each observation, assuming that the observations converged to the same mode are in the same
cluster.

3.4. Edge-preserving smoothers for image processing and robust nonparametric regression

Chu et al. (1998) proposed an edge-preserving smoother for image processing. Suppose that (x1, y1), . . . , (xn, yn) are an
independent and identically distributed random sample from

y = m(x) + ϵ,

where E(ϵ | X = x) = 0, var(ϵ | X = x) = σ 2, and m(·) is an unknown smoothing function except for some jump
discontinuities. The focus is to estimatem(·) at data points, i.e.,m(x1), . . . ,m(xn). The traditional nonparametric smoothers
have limited usefulness in image processing, because sharp ‘‘edges’’ tend to be blurred. The edge-preserving smoother of
m(xi) proposed by Chu et al. (1998) is the local maximizer of

S(θ) =

n
j=1

φg(yj − θ)φh(xi − xj), (3.6)

when starting from yi, where φh is the Gaussian kernel with bandwidth h.
Note that (3.6) has the mixture type objective function (1.2) with K = 1. Therefore, we can apply the GMEM algorithm

to maximize (3.6) to estimatem(xi): given the initial value θ (0)
= yi, in the (k + 1)th step,

E step: Let

π(j | θ (k)) =
φg(yj − θ (k))φh(xi − xj)
n

j=1
φg(yj − θ (k))φh(xi − xj)

, j = 1, . . . , n.

M step: Update

θ (k+1)
= argmax

θ

n
j=1

π(j | θ (k)) log{φg(yj − θ)} =

n
j=1

π(j | θ (k))yj.

Note that the edge-preserving smoother (3.6) has similar form of the local M estimator for any fixed g . Therefore, the
above GMEM algorithm can be also applied to produce robust nonparametric regression. However, unlike the traditional
localM estimator, Chu et al. (1998) proved that the conditions g → 0 and h → 0 are required in order to get edge-preserving
result.

3.5. Robust generalized M estimator for linear regression

Suppose (x1, y1), . . . , (xn, yn) are sampled from the regression model

y = xTβ + ϵ, (3.7)

where x is a p-dimensional vector of covariates independent of the error ϵ with E(ϵ) = 0. Traditionally, β is estimated by
least squares estimate (LSE)

β̂ = argmin
β

n
i=1

(yi − xTi β)2. (3.8)



524 W. Yao / Statistics and Probability Letters 83 (2013) 519–526

However, it is well known that the LSE is very sensitive to outliers. Many robust regression methods have been proposed.
One of the commonly used robust regressionmethods is theM-estimator (Huber, 1981; Andrews, 1974), which replaces the
square loss in (3.8) by some robust loss function ρ(·), i.e., estimates β by minimizing

n
i=1

ρ(yi − xTi β). (3.9)

The above robust M estimator regression works well if there are only outliers in the y direction. However, it is well known
that the M estimator regression does not work well if there are high leverage outliers and in fact has zero breakdown point
(Maronna et al., 2006).

Generalized M estimators (GM estimators for short) (Hampel et al., 1986) are an important class of robust regression
estimators which can deal with the high leverage outliers. The GM estimators find β by minimizing

l(β) =

n
i=1

w(xi)ρ(yi − xTi β), (3.10)

where w(·) is a weight function used to down-weight the high leverage points. Here we mainly consider the redescending
function ρ ′(·), since they completely reject gross outliers, while the Huber estimator effectively treats these the same as
moderate outliers. In addition, the redescending M-estimators are about 20% more efficient than the Huber estimator for
the Cauchy distribution. Based on Chu et al. (1998), minimizing (3.10) is equivalent to maximizing

Q (β) =

n
i=1

w(xi)Kh(yi − xTi β), (3.11)

where Kh is a kernel density. Note that (3.11) has the mixture form (1.2) with K = 1. Therefore, we can use GMEM to
maximize (3.11): given the initial value β(0), in the (k + 1)th step,
E step: Let

π(j | β(k)) =
w(xj)Kh(yj − xTj β

(k))

n
i=1

w(xi)Kh(yi − xTi β
(k))

, j = 1, . . . , n.

M step: Update

β(k+1)
= argmax

β

n
j=1

π(j | β(k)) log[Kh(yj − xTj β)].

If Kh(·) is taken as a Gaussian kernel, as used by Chu et al. (1998), then M step has an explicit form

β(k+1)
= (XTW(k)X)−1XTWY,

where X = (x1, x2, . . . , xn)T , Y = (y1, . . . , yn)T , and W(k)
= diag{π(1 | β(k)), . . . , π(n | β(k))}.

Note that the above GMEM still applies if the weight functionw(·) in (3.11) also depends on the response variable y, such
as the initial estimated residuals.

4. Discussion

Note that in (1.3) when K = 1, the condition that f1l(x) is a positive function can be in fact relaxed to the condition that
f1l(x) is bounded below such that f1l(x) + cl > 0 for all x for some cl > 0. Then, maximizing

L
l=1 a1lf1l(x) is equivalent to

maximizing
L

l=1 a1l(f1l(x) + cl).
Note that the proposed algorithm still belongs to the bigger class of EM algorithm. Therefore, all the properties of EM

algorithm (McLachlan and Krishnan, 2008) also apply to the GMEM algorithm proposed in this article.
In this article, we just mentioned some statistical applications of Eq. (1.2) that we are aware of. It requires more research

to explore other statistical applications of (1.2) besides the ones mentioned in this article.
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Appendix

Proof of Theorem 2.1. Let Y (t+1)
k be a discrete random variable such that

P

Y (t+1)
k =

fkl(x(t+1))

fkl(x(t))


=

aklfkl(x(t))

L
l=1

aklfkl(x(t))

, π
(t+1)
kl , l = 1, . . . ,m.

Then,

f (x(t+1)) − f (x(t)) =

K
k=1

wk log


L

l=1
aklfkl(x(t+1))

L
l=1

aklfkl(x(t))


=

K
k=1

wk log


L

l=1

aklfkl(x(t))

L
l=1

aklfkl(x(t))

aklfkl(x(t+1))

aklfkl(x(t))


=

K
k=1

wk log


L

l=1

π
(t+1)
kl

fkl(x(t+1))

fkl(x(t))



=

K
k=1

wk log

E

Y (t+1)
k


.

Based on Jensen’s inequality, we have

f (x(t+1)) − f (x(t)) ≥

K
k=1

wkE

log(Y (k+1))


=

K
k=1

wk

L
l=1

π
(t+1)
kl log

fkl(x(t+1))

fkl(x(t))

=

K
k=1

L
l=1

wkπ
(t+1)
kl log

fkl(x(t+1))

fkl(x(t))
.

The equality occurs if and only if fkl(x(t+1))/fkl(x(t)) are the same for all ls given any k = 1, . . . , K . Based on the property of
the M-step of (2.2), we have

K
k=1

L
l=1

wkπ
(t+1)
kl log{fkl(x(t+1))} ≥

K
k=1

L
l=1

wkπ
(t+1)
kl log{fkl(x(t))}.

Therefore,

f (x(t+1)) − f (x(t)) ≥ 0.
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